UN SDG
Call for SR&TD Project Grants - 2017
€215.734,05
Contribution of olive and olive oil polyphenolic compounds to the prevention of cardiovascular diseases.
Maria de Fátima Azevedo Brandão Amaral Paiva Martins
REQUIMTE - Rede de Química e Tecnologia - Associação
Other Engineering and Technologies
Health Sciences
No items to show...
In 16/17, the EU produced 70% of the total olive oil (OO) and has the greatest number of Protected Designation of Origin (PDO) virgin OO (International Olive Council - IOC). Spain produced 1311 (26 PDO), Italy 243 (40 PDO), Greece 260 (27 PDO) and Portugal 94 Gg (6 PDO). In other countries, Turkey produced 100 (3 PDOs), Syria 110, Morocco 110 (1 PDO) and Tunisia 100 Gg. There has also been an increase in production outside the Mediterranean (Med) area, in countries such as Australia (21 Gg). Therefore, competition with non-EU producers has grown for markets such as China, Japan, Brazil and USA. Supervised by the IOC, an international study reveals that it is crucial to design strategies to improve competitiveness by enhancing the quality and highlighting the distinctive characteristics of oils obtained in traditional systems, by making better use of by-products and seeking new uses through research and by encouraging consumer appreciation of VOO. As VOO consumption increases in new markets, consumer preference for OO with particular health benefits will dictate sales and market differentiation. In fact, there was an increased attention followed studies showing that in populations adhering to the Med diet with OO as the principal source of fat, rates of cardiovascular diseases (CVD) incidence are lower (1).
Several works have focused on the health properties of OO polyphenols (PP)1-4. However, scientific data are required to support their involvement in health benefits and their bioactivities remain to be clarified, especially as to WHICH compounds are crucial for those benefits, HOW they behave in the body and HOW MUCH quantity is required.  A major drawback of most studies made to date is the use of OO PP extracts (1-4) that are not chemically well defined and can differ greatly depending on the cultivar and processing conditions. Progress in these studies has been prevented by the lack of commercial OO PP standards, their conjugated and unconjugated metabolites. This is where this project fits. HOW? Isolation from olive trees by-products yielding large quantities of pure OO PP and several synthesis protocols will be used to obtain metabolites likely to occur in vivo. It is our objective to study the bioavailability and the protective effects against oxidative injury in relevant in vitro systems (LDL and RBC) and in vivo of the major PP found in VOO and their metabolites. The outcome of this project will be an important step for consumer appreciation of VOO and will contribute to the identification of the PP that make the major contribution to the health benefits of VOO regarding the CVD and will provide a scientific foundation for improving health through diet. From a technological point of view, processing operations could be driven towards the optimization of PP extraction(5) by cultivar, maturity stage(6) and olive oil extraction conditions selection. Therefore, we also intend to study the polyphenol profile of Portuguese monovarietal OO.
Olive oilPolyphenolsBioactivityMetabolitos