UN SDG
Call for SR&TD Project Grants - 2017
€154.162,17
Design of new gold catalysts for glycerol transformation into value-added products
Maria de La Salete da Silva Balula
REQUIMTE - Rede de Química e Tecnologia - Associação
Materials Engineering

Chemical Sciences
No items to show...
The large amount of glycerol resulted from the biodiesel production is an actual problem for the economic viability of this industry. The valorisation of this highly functionalized molecule is essential to ensure the sustainability of the biodiesel sector. Therefore, the search for more active and selective processes to transform glycerol into high-value fine chemicals is crucial. The selective oxidation of glycerol is of high interest since some oxidation products have numerous commercial applications (e.g, dihydroxyacetone, tartronic acid; glyceric acid, etc), although no oxidation process of glycerol has yet reached the industrial scale. 

This project aims to develop new clean technological processes capable to oxidize selectively the glycerol in to products with enormous commercial applications. The heterogeneous catalytic oxidation of glycerol using green oxidant such as molecular oxygen in liquid water will offer a suitable, environmentally benign alternative to traditional processes that use harmful organic solvents and expensive inorganic oxidants.

Strategic novel heterogeneous catalysts based on gold composites will be prepared and tested as promising selective catalysts for glycerol oxidation. The efficiency of gold nanoparticles (NPs) for alcohol oxidation is well described in the literature. Strategic porous Metal-Organic Frameworks (MOFs) will act as support materials for gold NPs. These present a high surface area and well defined pore structure that will be used for the stabilization of gold NPs with adjustable size. MOFs will be synthesized choosing appropriate organic ligands and metal centres to originate solids with cavities of predefined shapes and functionalities.

The optimization of guest and host properties will be performed to achieve high loading of NPs inside MOFs cavities and homogeneously dispersed. These properties will guaranty the highest efficiency of the catalysts. The application of these gold catalysts will be a novelty for the glycerol oxidative systems.

The research team integrates essentially young and highly motivated members that combine expertise in different areas that are fundamental for the execution of this project: (i) synthesis of gold NPs, (ii) synthesis of porous MOF materials and (iii) oxidative heterogeneous catalytic systems. The know-how of the research team is a strategic combination to develop novel efficient glycerol oxidation processes under eco-sustainable conditions.
Glycerol oxidation Heterogeneous catalysisGold catalystsMetal-organic Framework