UN SDG
Call for SR&TD Project Grants - 2017
€232.466,88
3Ds - TransDermal Drug Delivery
Sofia Teresa Coimbra Antunes Costa Lima
REQUIMTE - Rede de Química e Tecnologia - Associação
Chemical Sciences
No items to show...
A rational approach for the development and optimization of skin formulations demands well-defined skin models, able to identify and evaluate the intrinsic properties of the formulation. Increasing restrictions in use and handling of animals and human skin stimulated the search for suitable alternative skin models. Design of the most applicable in vitro model for transdermal delivery should be based on the interplay between the availability, easiness of the use, cost and the respective limitations in relation to human skin. Currently developed in vitro models lack similarity with human skin stratum corneum (SC) barrier in term of lipid composition and structure. The SC is the main contributor to the barrier properties of the skin that slows the drug penetration rates, limits drug uptake and contributes to lack of the dosing precision. Importantly, the final penetration potential of the drug can be modulated by the right optimization of a vehicle. Hydrogels prepared using natural hydrophilic polymers constitute a colloidal network with a high degree of flexibility, similar to natural tissue, and with the potential to controlled drug delivery systems. Marine polymers derived from marine organisms offer advantages as can be easily extracted, are water-soluble and biocompatible, biodegradable and exhibit adhesive properties, anti-inflammatory activities, the ability to form hydrogels which may respond to external stimuli.
3Ds research project aims to develop an alternative in vitro skin model for testing the transdermal delivery of bioactive compounds and to apply it as a tool in the optimization of drug formulation. The novel in vitro skin model will focus on the human SC barrier and will translate the lipid composition and the layers structure into a cost-effective mimetic platform in relation to existing phospholipid vesicle-based permeation assay?s systems. The developed SC mimetic model will be tested for their suitability for transdermal delivery applications in vitro and correlated with pig ear and human skin models. As proof-of-concept, the efficacy of the developed systems will be demonstrated for the delivery of bioactive agents upon optimization of drug formulation through marine-based hydrogels.
The multidisciplinary research team from REQUIMTE and the University of Porto has wide expertise on liposome production and characterization, delivery systems development, and optimization of transdermal formulations that assure the successful performance of the research proposal. 3Ds will end up with fully characterized and functional lipid based SC model demonstrated in a preclinical drug optimization development stage using marine-based hydrogels for enhanced transdermal delivery. 3Ds results will be a stepping stone for optimization of transdermal drug formulation.
Formulation developmentMarine compound-based hydrogelsPhospholipid vesicle-based permeation assaySkin mimetic models